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Bistability and hysteresis of solitons in inhomogeneously doped fibers
with saturating nonlinearity
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Inhomogeneous doping of a silica glass fiber is proposed to have bistable soliton propagation. The properties
of the solitons in one of the possible models are studied and interpf&&@63-651X98)05409-9
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Ever since the pioneering work of Kaplah,2] there has equation in the core region of the fiber can be written as
been a constant endeavor from researchers to obtain a suit-
able and practically feasible model for bistable soliton propa-
gation in doped fibers that show nonlinear saturation in the c2 g2 ¢
intensity dependent refractive indgx—10]. Initial studies of
Gatz and Herrman[8,4], Sombrg 5], and Kumar, Kurz, and  where D" and D" are the linear and the nonlinear parts,
Lauterborn 6—8] showed that fibers made of semiconductor—respectiveW’ of the electric induction vectdr. D" is given
doped glasses support two-state solitons that represent pul
with the same pulsewidth but with different energies or pow-
ers. This property is similar to the property of a bistable > e e
system in the sense that for a given input control parameter D'= JO e(t)E(t—t)dt’, @
(pulsewidth there are two output states of the system. How-
ever, this is a different kind of bistability compared to the wheree is the linear permittivity of the fiber.
original one envisioned by Kaplafi]. Because of this re- Because of inhomogeneous doping the nonlinear dielec-
searchers started studying pulse propagation in doubly dopdtic constant will acquire a radial dependence in the region
fibers. Here also, as shown by Gatz and Herrmigdnone  O<r=<a. Therefore, the nonlinear part &f is taken to be
can have only two-state solitons. Later, Enns and Edmund-
son[9] showed that Kaplan-type bistable solitons can exist if L @ @
one could have a fiber made of doped glass with three dop- D™ =[e; "+ asy f(r)]
ants. This fact has been confirmed by Kureaal.[10] in a
r_nod_ified model. The_ advantage of having bistable SOlimn?/\/heres(2”, j=1,2 are the Kerr coefficients for the nonlinear
lies in the fact that Wlth them one would pe able to ConStruﬁ%ermittivity of the first (=1) and second dopan§£2),
ultrafast all-optical switches besides being able to perfor

| oth ful i le. fissi f soli espectively] s is the saturation intensity, which, for simplic-
several other usetul opera '9®r example, nission ot Soli- ity, is taken to be the same for both doparfts,) stands for
tons, fusion of solitons, radiation stripping, efd.1]) in a

multiport nonlinear directional coupler configuration the radial dependence of the nonlinear permﬂhwty, and
) ; : tands for the second dopant concentration relative to the
In the given paper we propose a mechanism that would t dobant concentration. Note thdj) i~ 1 2is related to
enable us to have bistable solitons in a fiber made of dope st dop - (j)' ) o 1= e lsTelale
glass with two dopants provided the second dopant is inhon€® Kerr coefficientn;”, for the nonlinear refractive index
mogeneously distributed over a restricted region of the crosghange, through the relatiofv] e¥=2nonY, j=1,2; ng
one can have bistable solitons and the system is also capaleoving further we have to take a concrete form of the func-
of showing hysteretic behavior as predicted by Kaplan. ~ tion f(r). We take it as follows:
Consider a monomode isotropic doped glass fiber with 2 forr<
circular cross section. Let the glass be doped with two dop- f(r)= exp(xr®) forr<a
ants. One of the dopants is assumed to be homogeneously 0
distributed over the entire fiber core while the second has
inhomogeneous radial distribution over the cross section efvhere y is a constant. Now, as usu@l], we represent the
closed between €r<a. Also the second dopant is sup- electric field envelope amplitude in the following form
posed to be defocusing. The inhomogeneous distribution is - . )
such that the concentration of the second dopant is minimum E(x,y,z,t)=eR(NA(z,t)exf —i(wt=Bo2)], (5
on the fiber axis and increases exponentially away from it up -
to r=a. The concrete value dd will be determined later. Wheree is the unit vector in the direction of polarizatiofig
With these things in mind we proceed to model nonlinearis the propagation constanR(F) is the mode function giving
pulse propagation in such a fiber. the transverse distribution of the field in the mode, and
Let z be the direction along the fiber. The nonlinear waveA(z,t) is the complex envelope amplitude of the pulse. Fur-
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ther, adopting the customary slowly varying envelope ap- 18
proximation and performing the averaging over the fiber
cross section by taking the first moment of the differential I it 1
equation with respect to the modal field distributi@vhich,

as usual, is assumed to be GaussRa(nT,) = exp(—r2/2r(2)) we

obtain, from Eqs(1)—(5), the following dimensionless evo- - 10

lution equation for the normalized complex envelope ampli- 8 F -
tudeq(&,7) for the casexrz=2: 6 .
4 [~ -
i9:+20..+f(lal>)a=0, (6) 2| 1
where %.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
f(ad=1 In(1+|q|?) g
(1al%= |q|2 FIG. 1. Soliton peak amplitudg¥, vs nonlinear propagation
constan{B for «=0.04,=5, and three values @f[1.7: (curve IlI),
—ad{o|q|*+]ql’In[1+exp(— o)|q|?] 1.715(curve ll), and 1.725curve )].
N2 2
— - A
The dimensionless variables in E¢6) and(7) are given by 4v 8V v
—adoc¥V+ad¥ In(1+V)
q=A/ls&=(wnPI /c)z,
—adV In[1+exp—o)P]=0. (13
z
T= \/[wn(Zl)lslc(_kww)](t_ v—), (8)  Here the prime stands for the ordinary derivative with re-
g spect tor.
—|n@/nd
5_|n2 |/n2 ! ©) NUMERICAL RESULTS AND DISCUSSIONS
and For a given set of the parametears s, ando and a given
initial amplitude ¥, we first determine the appropriate
a2 value of the nonlinear propagation constgnby exploiting

(100  the first integral of Eq(13), the boundary conditions given
by Eq. (12), and the fact that we are looking for the bright
soliton solutions with a maximum at=0. This yields

Herer is the radial distance from the fiber axis at which the

field intensity drops by a factor &/ Also, in deriving this g=1- ado o (e"—l)

equation we have taken into account tmgt’<0 for the 2 0 21 2

defocusing second dopant. Note tbmﬁ: 2 has been chosen as 020

for the simplicity of the model equation rather than anything - (\IIO— _) In(1+W¥,)

else. In general, one can take any sensible valweréfand 2 Yo

obtain the model equation. ad 1 Fi(Wo)

+7 (\Ifo— \P—O)In(1+\lf0)— v, (14)
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THE SOLITON SOLUTION

) _ where
We look for the fundamental soliton solutions of E§)
in the following form: Yo In(1+Yy)
Fi(¢o)= fo — (15
a(é, 7= Vy¥(r)expiBé), 11
We then use this value ¢ to determine the soliton shape by
where numerically integrating Eg.(13) via the Runge-Kutta
method. Finally, we numerically compute the soliton energy
lim ¥(7)= lim [d¥(7)/dr]=0, (12 P according to the formula
|7l —e 7] —e
— 2
where 8 has the meaning of the nonlinear propagation con- P f—x|q| dr. (16

stant shift. Using this form of the soliton solution we obtain o .
from Egs.(6), (7), and(10) the following ordinary differen- The results are shown in Figs. 1-4. In Fig. 1 we have
tial equation for¥(7): plotted V¥, as a function of the nonlinear addition to the



PRE 58

0
0.005 001 0015 0.02 0.025 0.03 0.035 004 0045 0.05

8

FIG. 2. Soliton peak amplitudg¥, vs nonlinear propagation
constantB for a=0.04,5=7.5, and three values af [1.4 (curve
Ill),=1.415(curve Il), and=1.425(curve )].

propagation constang. All the plots in this figure corre-
spond toa=0.04 ands=5 but different values ob-: 1.7
(curve I, 1.715(curve 1), and 1.725curve ). In Fig. 2 we
have the same plots far=0.04,5=7.5, ando=1.4 (curve
1), o=1.415(curve Il), ando=1.425(curve ). It is quite

80
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FIG. 4. The soliton shap®(7) for «=0.04,5=5, ando=1.7,
corresponding to th@(B) curve of Fig. 3(curve Ill). The smallest
soliton (curvea with P=3.665) belongs to the lower positive slope
branch of theP(B) curve, while the tallest solitoficurve c with
P=10.562) belongs to the upper positive slope branch oPt)g)
curve. These soliton solutions are stable. The soliton solution, curve
b, with (P=5.49) belongs to the negative slope branch ofR{g)

curve and is unstable.

clear from these figures that the nonlinear addition to théhose corresponding to the negative slope branch are un-

propagation constamg is a multivalued function of the soli-
ton peak amplitude/¥,. It is also visible that for given
values ofa, § and the maximum peak amplitudend hence
peak powerthe interval of8, for which bistable solitons are
possible, depends am: the larger the value of the larger
the B8 range of bistability.

Figure 3 contains the plot of the soliton enerByas a

function of 8. The curve labeled | in Fig. 3 corresponds to different for different pairs.

a=0.04,6=7.5, ando= 1.4 while the curve labeled Il cor-
responds tax=0.04 andé=5 ando=1.7. It is clear from

value of B there are three values & for which soliton

solutions exist. Soliton solutions corresponding to the pOsiy

tive slope branches of thB(B) curve satisfy the stability
criterion [1,2] given by dP/dB)>0, and are stable, while
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FIG. 3. Soliton energy vs nonlinear propagation constaghfor
a=0.04,5=7.5, ando=1.4 (curve Il) and «=0.04,5=5, ando
=1.7 (curve .

stable.

Before proceeding further we would like to note here that
we have studied soliton solutions in the given model for a
wide range of the parametessand 6. We find that for each
pair of values of the parametetisand 6 the soliton solutions
exist for any value of the parameter However, bistability
exists only foro greater than a particular valus;,, which is

For illustration, we have depicted the soliton shapes in
Fig. 4 corresponding to all three branches of B{g) curve.
Fig. 3 thatP(pB) is S shaped, and ensures the bistable andHere w=0.04 ands=5 ando=1.7 All these solutions have
hysteretic behavior of the soliton solutiofsee pages 1292 the same value 0B=0.079 002 75. The smallest soliton in
and 1293 in Ref[1]). Further, Fig. 3 shows that for a given Fig. 4 (curvea with energyP=3.665) belongs to the lower

_positive slope branch of the(B) curve and is stable while
he tallest soliton in Fig. 4(curve c with energy P

=10.562) belongs to the upper positive slope branch of the
P(B) curve and is also stable. The soliton solution given by
curve b with energyP=5.49 belongs to the negative slope
branch of theP(B8) curve and is unstable. The pair of values
of @ and §, for which the results have been presented here, is

just a representative pair.

In order to have a feeling of the orders of magnitudes of
the soliton characteristics, let us consider the case of a fiber
made of silica glass homogeneously doped with PTS and
inhomogeneously doped with CdS and Se ((3¥5_,) such
that «=0.04. The experimental value of for PTS, in the
resonant case, is210 ! cm?/W and for Cd$Se _, it is
—10 %0 cn?/W [13]. Hence for these dopan&=5 and the
case corresponds to one of the sets of parameters used in the

given work.

If

we

take A=1.55um, ny=1.44,l,

=200 MW/cnt, andk,,,=27(p$/K m) and insert them into
the rescaling relation given by E) we obtain thatr=1
corresponds to 411 fs. For this case the upper positive slope
branch soliton of Fig. 4 has a full width at half maximum
(FWHM) equal to 123 fs and a peak intensity of 144.40
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X 10" W/cn? and the lower positive slope branch soliton hasinhomogeneously doped fiber. To the best of our knowledge
a FWHM of 205 fs and a peak intensity of 19.60 such asystem has not been considered and studied so far. We

X 10" Wicn?. have obtained and studied the properties of these solitons in
Further analysis shows that if, for a given set of values ofone of the possible models. Our analysis shows that for a
a and 4, we go on increasing the value of (i.e., go on given set of the parameters, &, and o there exist three
increasing the region of inhomogeneous doping with the secsoliton solutions that represent light pulses with different en-
ond defocusing dopantthen there appears an interval of ergies and shapes but with the same nonlinear propagation
V¥, for which 8 becomes negative and beyond this intervalconstant3. Two stable branches of solitons are separated by
returns to take on positive values. For these values of than unstable branch as required for switching from one
initial soliton amplitudes for whiclB is negative we obtain pjstable state to the othg®]. We believe that with the avail-
cnoidal wave solutions and not the soliton solutions. Hencgple advanced technology for doping materials in a con-
for these values of the lower and the upper positive slope trolled manner it should be possible to have fibers with the

branch solitons are separated by cnoidal solutions and hencgoperties described here and hence our results should be
in the terminology of Snydeet al.[12], these bistable soli- | sefyl for practical applications.
tons are discontinuous solitons.

CONCLUSIONS The given work is partially supported by the Department
We report the results of our studies related to bistable®’ Science and Technology, Government of India, through a
solitons in doped fibers. The work is based on the idea of afésearch project grant.
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