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Bistability and hysteresis of solitons in inhomogeneously doped fibers
with saturating nonlinearity
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Inhomogeneous doping of a silica glass fiber is proposed to have bistable soliton propagation. The properties
of the solitons in one of the possible models are studied and interpreted.@S1063-651X~98!05409-9#

PACS number~s!: 42.81.2i, 42.65.Tg
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Ever since the pioneering work of Kaplan@1,2# there has
been a constant endeavor from researchers to obtain a
able and practically feasible model for bistable soliton pro
gation in doped fibers that show nonlinear saturation in
intensity dependent refractive index@3–10#. Initial studies of
Gatz and Herrmann@3,4#, Sombra@5#, and Kumar, Kurz, and
Lauterborn@6–8# showed that fibers made of semiconduct
doped glasses support two-state solitons that represent p
with the same pulsewidth but with different energies or po
ers. This property is similar to the property of a bistab
system in the sense that for a given input control param
~pulsewidth! there are two output states of the system. Ho
ever, this is a different kind of bistability compared to th
original one envisioned by Kaplan@1#. Because of this re-
searchers started studying pulse propagation in doubly do
fibers. Here also, as shown by Gatz and Herrmann@4#, one
can have only two-state solitons. Later, Enns and Edmu
son@9# showed that Kaplan-type bistable solitons can exis
one could have a fiber made of doped glass with three d
ants. This fact has been confirmed by Kumaret al. @10# in a
modified model. The advantage of having bistable solito
lies in the fact that with them one would be able to constr
ultrafast all-optical switches besides being able to perfo
several other useful operations~for example, fission of soli-
tons, fusion of solitons, radiation stripping, etc.@11#! in a
multiport nonlinear directional coupler configuration.

In the given paper we propose a mechanism that wo
enable us to have bistable solitons in a fiber made of do
glass with two dopants provided the second dopant is in
mogeneously distributed over a restricted region of the cr
section of the fiber core. As it turns out, in such a syste
one can have bistable solitons and the system is also cap
of showing hysteretic behavior as predicted by Kaplan.

Consider a monomode isotropic doped glass fiber w
circular cross section. Let the glass be doped with two d
ants. One of the dopants is assumed to be homogeneo
distributed over the entire fiber core while the second
inhomogeneous radial distribution over the cross section
closed between 0<r<a. Also the second dopant is sup
posed to be defocusing. The inhomogeneous distributio
such that the concentration of the second dopant is minim
on the fiber axis and increases exponentially away from it
to r 5a. The concrete value ofa will be determined later.
With these things in mind we proceed to model nonline
pulse propagation in such a fiber.

Let z be the direction along the fiber. The nonlinear wa
PRE 581063-651X/98/58~4!/5021~4!/$15.00
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equation in the core region of the fiber can be written as

¹W 2EW 2
1

c2

]2DW L

]t2
5

1

c2

]2DW NL

]t2
, ~1!

where DW L and DW NL are the linear and the nonlinear part
respectively, of the electric induction vectorDW . DW L is given
by

DW L5E
0

`

«~ t8!EW ~ t2t8!dt8, ~2!

where« is the linear permittivity of the fiber.
Because of inhomogeneous doping the nonlinear die

tric constant will acquire a radial dependence in the reg
0<r<a. Therefore, the nonlinear part ofDW is taken to be

DW NL5@«2
~1!1a«2

~2! f ~r !#
uEW u2EW

11uEW u2/I s

, ~3!

where«2
( j ) , j 51,2 are the Kerr coefficients for the nonline

permittivity of the first (j 51) and second dopant (j 52),
respectively,I s is the saturation intensity, which, for simplic
ity, is taken to be the same for both dopants,f (r ) stands for
the radial dependence of the nonlinear permittivity, anda
stands for the second dopant concentration relative to
first dopant concentration. Note that«2

( j ) , j 51,2 is related to
the Kerr coefficientn2

( j ) , for the nonlinear refractive index
change, through the relation@7# «2

( j )52n0n2
( j ) , j 51,2; n0

being the linear refractive index of the fiber core. Befo
moving further we have to take a concrete form of the fun
tion f (r ). We take it as follows:

f ~r !5H exp~xr 2! for r ,a

0 for r>a,
~4!

wherex is a constant. Now, as usual@7#, we represent the
electric field envelope amplitude in the following form

EW ~x,y,z,t !5eWR~rW !A~z,t !exp@2 i ~vt2b0z!#, ~5!

whereeW is the unit vector in the direction of polarization,b0

is the propagation constant,R(rW) is the mode function giving
the transverse distribution of the field in the mode, a
A(z,t) is the complex envelope amplitude of the pulse. F
5021 © 1998 The American Physical Society
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5022 PRE 58AJIT KUMAR
ther, adopting the customary slowly varying envelope
proximation and performing the averaging over the fib
cross section by taking the first moment of the differen
equation with respect to the modal field distribution~which,
as usual, is assumed to be Gaussian,R(rW)5exp(2r2/2r 0

2) we
obtain, from Eqs.~1!–~5!, the following dimensionless evo
lution equation for the normalized complex envelope am
tudeq(j,t) for the casexr 0

252:

iqj1 1
2 qtt1 f ~ uqu2!q50, ~6!

where

f ~ uqu2!512
ln~11uqu2!

uqu2

2ad$suqu21uqu2ln@11exp~2s!uqu2#

2uqu2ln~11uqu2!%. ~7!

The dimensionless variables in Eqs.~6! and~7! are given by

q5A/AI s,j5~vn2
~1!I s /c!z,

t5A@vn2
~1!I s /c~2kvv!#S t2

z

vg
D , ~8!

d5un2
~2!u/n2

~1! , ~9!

and

s5
a2

r 0
2

. ~10!

Herer 0 is the radial distance from the fiber axis at which t
field intensity drops by a factor 1/e. Also, in deriving this
equation we have taken into account thatn2

(2),0 for the
defocusing second dopant. Note thatxr 0

252 has been chose
for the simplicity of the model equation rather than anythi
else. In general, one can take any sensible value ofxr 0

2 and
obtain the model equation.

THE SOLITON SOLUTION

We look for the fundamental soliton solutions of Eq.~6!
in the following form:

q~j,t!5AC~t!exp~ ibj!, ~11!

where

lim
utu→`

C~t!5 lim
utu→`

@dC~t!/dt#50, ~12!

whereb has the meaning of the nonlinear propagation c
stant shift. Using this form of the soliton solution we obta
from Eqs.~6!, ~7!, and~10! the following ordinary differen-
tial equation forC~t!:
-
r
l

-

-

C9

4C
2

~C8!2

8C2 1~12b!2
ln~11C!

C

2adsC1adC ln~11C!

2adC ln@11exp~2s!C#50. ~13!

Here the prime stands for the ordinary derivative with
spect tot.

NUMERICAL RESULTS AND DISCUSSIONS

For a given set of the parametersa, d, ands and a given
initial amplitude AC0 we first determine the appropriat
value of the nonlinear propagation constantb by exploiting
the first integral of Eq.~13!, the boundary conditions given
by Eq. ~12!, and the fact that we are looking for the brig
soliton solutions with a maximum att50. This yields

b512
ads

2
C02

ad

2 S es21

2 D
2

ad

2 S C02
e2s

C0
D ln~11C0!

1
ad

2 S C02
1

C0
D ln~11C0!2

F1~C0!

C0
~14!

where

F1~c0!5E
0

C0 ln~11y!

y
. ~15!

We then use this value ofb to determine the soliton shape b
numerically integrating Eq.~13! via the Runge-Kutta
method. Finally, we numerically compute the soliton ener
P according to the formula

P5E
2`

`

uqu2dt. ~16!

The results are shown in Figs. 1–4. In Fig. 1 we ha
plotted AC0 as a function of the nonlinear addition to th

FIG. 1. Soliton peak amplitudeAC0 vs nonlinear propagation
constantb for a50.04,d55, and three values ofs @1.7: ~curve III!,
1.715~curve II!, and 1.725~curve I!#.
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propagation constantb. All the plots in this figure corre-
spond toa50.04 andd55 but different values ofs : 1.7
~curve III!, 1.715~curve II!, and 1.725~curve I!. In Fig. 2 we
have the same plots fora50.04,d57.5, ands51.4 ~curve
III !, s51.415~curve II!, ands51.425~curve I!. It is quite
clear from these figures that the nonlinear addition to
propagation constantb is a multivalued function of the soli
ton peak amplitudeAC0. It is also visible that for given
values ofa, d and the maximum peak amplitude~and hence
peak power! the interval ofb, for which bistable solitons are
possible, depends ons : the larger the value ofs the larger
the b range of bistability.

Figure 3 contains the plot of the soliton energyP as a
function of b. The curve labeled I in Fig. 3 corresponds
a50.04,d57.5, ands51.4 while the curve labeled II cor
responds toa50.04 andd55 ands51.7. It is clear from
Fig. 3 thatP(b) is S shaped, and ensures the bistable a
hysteretic behavior of the soliton solutions~see pages 1292
and 1293 in Ref.@1#!. Further, Fig. 3 shows that for a give
value of b there are three values ofP for which soliton
solutions exist. Soliton solutions corresponding to the po
tive slope branches of theP(b) curve satisfy the stability
criterion @1,2# given by (dP/db).0, and are stable, while

FIG. 3. Soliton energyP vs nonlinear propagation constantb for
a50.04,d57.5, ands51.4 ~curve II! and a50.04,d55, ands
51.7 ~curve I!.

FIG. 2. Soliton peak amplitudeAC0 vs nonlinear propagation
constantb for a50.04,d57.5, and three values ofs @1.4 ~curve
III !,51.415~curve II!, and51.425~curve I!#.
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those corresponding to the negative slope branch are
stable.

Before proceeding further we would like to note here th
we have studied soliton solutions in the given model fo
wide range of the parametersa andd. We find that for each
pair of values of the parametersa andd the soliton solutions
exist for any value of the parameters. However, bistability
exists only fors greater than a particular values th , which is
different for different pairs.

For illustration, we have depicted the soliton shapes
Fig. 4 corresponding to all three branches of theP(b) curve.
Herea50.04 andd55 ands51.7 All these solutions have
the same value ofb50.079 002 75. The smallest soliton i
Fig. 4 ~curvea with energyP53.665) belongs to the lowe
positive slope branch of theP(b) curve and is stable while
the tallest soliton in Fig. 4~curve c with energy P
510.562) belongs to the upper positive slope branch of
P(b) curve and is also stable. The soliton solution given
curve b with energyP55.49 belongs to the negative slop
branch of theP(b) curve and is unstable. The pair of value
of a andd, for which the results have been presented here
just a representative pair.

In order to have a feeling of the orders of magnitudes
the soliton characteristics, let us consider the case of a fi
made of silica glass homogeneously doped with PTS
inhomogeneously doped with CdS and Se (CdSxSe12x) such
that a50.04. The experimental value ofn2 for PTS, in the
resonant case, is 2310211 cm2/W and for CdSxSe12x it is
210210 cm2/W @13#. Hence for these dopantsd55 and the
case corresponds to one of the sets of parameters used
given work. If we take l51.55mm, n051.44,Is
5200 MW/cm2, andkvv527(ps2/K m) and insert them into
the rescaling relation given by Eq.~8! we obtain thatt51
corresponds to 411 fs. For this case the upper positive s
branch soliton of Fig. 4 has a full width at half maximu
~FWHM! equal to 123 fs and a peak intensity of 144.

FIG. 4. The soliton shapeC~t! for a50.04,d55, ands51.7,
corresponding to theP(b) curve of Fig. 3~curve III!. The smallest
soliton ~curvea with P53.665) belongs to the lower positive slop
branch of theP(b) curve, while the tallest soliton~curve c with
P510.562) belongs to the upper positive slope branch of theP(b)
curve. These soliton solutions are stable. The soliton solution, cu
b, with (P55.49) belongs to the negative slope branch of theP(b)
curve and is unstable.
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3107 W/cm2 and the lower positive slope branch soliton h
a FWHM of 205 fs and a peak intensity of 19.6
3107 W/cm2.

Further analysis shows that if, for a given set of values
a and d, we go on increasing the value ofs ~i.e., go on
increasing the region of inhomogeneous doping with the s
ond defocusing dopant! then there appears an interval
AC0 for which b becomes negative and beyond this inter
returns to take on positive values. For these values of
initial soliton amplitudes for whichb is negative we obtain
cnoidal wave solutions and not the soliton solutions. He
for these values ofs the lower and the upper positive slop
branch solitons are separated by cnoidal solutions and he
in the terminology of Snyderet al. @12#, these bistable soli-
tons are discontinuous solitons.

CONCLUSIONS

We report the results of our studies related to bista
solitons in doped fibers. The work is based on the idea o
e

f

c-

l
e

e

ce,

e
n

inhomogeneously doped fiber. To the best of our knowled
such a system has not been considered and studied so fa
have obtained and studied the properties of these soliton
one of the possible models. Our analysis shows that fo
given set of the parametersa, d, and s there exist three
soliton solutions that represent light pulses with different e
ergies and shapes but with the same nonlinear propaga
constantb. Two stable branches of solitons are separated
an unstable branch as required for switching from o
bistable state to the other@9#. We believe that with the avail-
able advanced technology for doping materials in a c
trolled manner it should be possible to have fibers with
properties described here and hence our results shoul
useful for practical applications.

The given work is partially supported by the Departme
of Science and Technology, Government of India, throug
research project grant.
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